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Chapter 15

Redox Proteomics Identification of Oxidatively

Modified Proteins in Alzheimer’s Disease Brain

and in Brain from a Rodent Model of Familial

Parkinson’s Disease: Insights into Potential

Mechanisms of Neurodegeneration

Rukhsana Sultana, H. Fai Poon, and D. Allan Butterfield

Introduction

Oxidative stress, an imbalance between the oxidant and antioxidant systems, has

been implicated in the pathogenesis of numerous neurodegenerative diseases [1].

Among all the body organs, the brain is particularly vulnerable to oxidative

damage because of its high utilization of oxygen, increased levels of polyunsa-

turated fatty acids, and relatively high levels of redox transition metal ions in

certain brain regions; in addition, the brain has relatively low levels of antiox-

idants [2–6]. The presence of iron ion in an oxygen-rich environment can further

lead to enhanced production of superoxide radicals and ultimately to a cascade

of oxidative events. Either the oxidant directly or the products of oxidative stress

could trigger the oxidative modification of a number of cellular macromolecular

targets, including proteins, lipids, DNA, RNA, and carbohydrates, which may

lead to impairment of cellular functions [2,3,5,7–9].
Among the earliest of these changes following an oxidative insult are

increased levels of toxic carbonyls, 3-nitrotyrosine (3-NT), and 4-hydroxy-2-

trans-nonenal (HNE) [2,4,7,10–13]. HNE is derived from free radical attack on

unsaturated acyl chains of phospholipids, particularly arachidonic acid. Oxida-

tion leads to introduction of carbonyl groups to proteins [14]. Carbonyl groups

are incorporated into proteins by direct oxidation of certain amino acid side

chains, peptide backbone scission, or Michael addition reactions with products

of lipid peroxidation or glycol oxidation [4,15,16]. Protein carbonyls can be

detected by the derivatization of the carbonyl group with 2,4-dinitrophenylhy-

drazine (DNPH), followed by immunochemical detection of the hydrazone

product [14]. Oxidative stress can stimulate additional damage via overexpres-

sion of inducible nitric oxide synthase (iNOS) and the action of constitutive
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neuronal NOS (nNOS), which leads to increased levels of 3-NT. The levels of

thiobarbituric acid reactive substance (TBARS), free fatty acid release, HNE

and acrolein formation, and iso- and neuroprostane formation are the most

commonly used parameters to index lipid peroxidation. DNA and RNA

oxidation are measured by formation of 8-OH-2a-deoxyguanosine and other
oxidized bases as well as altered DNA repair mechanisms.

Proteomics

Oxidatively modified brain proteins were initially identified using immunopre-

cipitation methods [17,18]. However, there are serious limitations to the use of

this technique. For example, prior knowledge about the identity of the protein
of interest is required, the availability of the particular antibody for the protein

of interest is necessary, and the time-consuming and laborious nature of the

process is a hindrance. In addition, posttranslational modification of protein

may change the structure of proteins, thereby preventing the formation of the

appropriate antigen–antibody complex. Redox proteomics has enabled us to
identify a large number of oxidatively modified proteins in cells, tissues, and

other biological samples that were previously undetected by other methods such

as immunoprecipitation [19–21]. Unlike gene analysis and mRNA analysis,

proteomics provides a broad spectrum of information that allows insights
into the mechanisms of disease and identification of disease-associated markers

and may also help to identify selected targets for specific therapy (Fig. 1).
Redox proteomics couples two-dimensional (2D) gel electrophoresis separa-

tion of proteins and 2DWestern blots with mass spectrometric techniques that

Mechanisms of
disease

Identification of
disease-associated markers

Select targets
for specific therapy

Proteomics

Gene
analysis

mRNA
analysis

Application to disease

Fig. 1 Proteomics: global analysis of cellular proteins
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allow facile identification of oxidatively modified proteins without consuming
as much time and effort as immunochemical methods [19–21]. Two-dimen-
sional polyacrylamide gel electrophoresis (2D-PAGE) allows the investigator
to analyze complex protein mixtures based on two important physicochemical
properties: isoelectric focusing (IEF), which separates proteins based on their
isoelectric points (pI); and separation of proteins based on their relative mobi-
lity (Mr) on sodium dodecyl sulfate (SDS)-PAGE in the second dimension [22].
Normally a single spot on the 2D gel represents a single protein [23]. This
property allows separation of thousands of different protein spots on one gel.
In addition, 2D-PAGE is used to catalog proteins and create databases [24].

2D-PAGE is a sensitive, reliable method with high reproducibility, although
many challenges still exist. The first serious limitation of 2D is the solubilization
process for membrane proteins [25] as ionic detergents would introduce a
charge to the protein, thereby interfering with IEF. The inability to detect
low-abundance proteins is the second limitation of 2D-PAGE; and the third
limitation is the insensitivity to proteins of high lysine and arginine content
(which leads to small tryptic peptides that could be lost on a gel). The use of
chaotropic agents such a urea and thiourea coupled with nonionic or zwitter-
ionic detergents can solubilize proteins and also avoid protein precipitation
during the IEF and the SDS gel processes [26]. The use of immobilized pH IEF
strips (immobilized pH gradient, or IPG, strips) improves the reproducibility of
proteins maps and also eliminates the typical cathodic drift associated with
previously used tube gels [27]. The use of narrow-range IPG strips enables
protein separation over a wide pH range but within 1 pH unit. However, the
normally employed IEF strip pH range (i.e., 3–10) limits the identification of
highly basic proteins. If a protein from a low-abundance protein group were
involved in the pathogenesis of a disease, it would be difficult to use this
technique for detection.

In our laboratory we coupled redox proteomics techniques with immuno-
chemical detection of protein carbonyls derivatized by 2,4-dinitrophenylhy-
drazine (DNPH), nitrated proteins indexed by 3-NT, and protein adducts of
HNE, followed by mass spectrometric (MS) analysis (as shown in Fig. 2) to
identify oxidatively modified proteins from Alzheimer’s disease (AD) brain
and related models. With this method we employ a parallel analysis: The 2D
Western blots and 2D gel images are matched by computer-assisted image
analysis, and the anti-DNP/nitrotyrosine/HNE immunoreactivity of indivi-
dual proteins are normalized to their content, obtained by measuring the
intensity of colloidal Coomassie Blue staining or SYPRO ruby-stained spots
(Figs. 3, 4). Such analysis allows comparison of levels of oxidatively modified
brain proteins in experimental versus control subjects. Once the protein is
identified as oxidatively modified, it is digested in gel with a protease (e.g.,
trypsin) that not only cleaves the protein into small peptides but produces
sequence-specific proteolysis. These mass fingerprints are modified proteins
from AD brain and related models; they are characteristic of a particular
protein, which facilitates the identification of a particular protein using a
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suitable database (Table 1) that compares the experimental masses with

theoretical masses of trypsin-generated protein sequences.
Mass spectrometry determines the peptide masses and can determine the

amino acid sequence for the proteins of interest. Modern MS instruments use

softer ionization techniques than previously, and they can provide a precise

peptide mass. The two most commonly employed MS techniques are MALDI

• 2D Gel Electrophoresis

• Protein Digestion

• Peptide extraction

• Mass spectrometry

• Identification of the protein

• Treatment with DNPH

• 2D Gel Electrophoresis 

• Western blotting

• Immuno-detection of
protein carbonyls

• Identification of the
oxidized proteins in AD vs.
control

Brain Sample

Fig. 2 Redox proteomics to identify oxidatively modified brain proteins in Alzheimer’s
disease
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Fig. 3 Two-dimensional maps of brain proteins from controls (C) and Alzheimer’s disease
patients (AD)
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(matrix-assisted laser desorption/ionization) and ESI (electrospray ionization).
With MALDI analysis the peptide sample is mixed with a matrix, usually
a-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid, and deposited
on a plate that is subjected to laser radiation. The matrix absorbs the energy,
which is then transferred to the peptides. The peptides then vaporize as detect-
able MH+ ions by an unknown mechanism related to the acidic nature of the
matrix.

In contrast to MALDI MS, ESI permits direct MS analysis of the samples
from high-performance liquid chromatography (HPLC) columns for charac-
terization. towing to the high potential difference between the capillary and the
MS instrument, the inlet sample is dispersed as small droplets. These droplets
undergo solvent evaporation until droplet fission occurs, because of the high
charge-to-surface tension ratio, finally leading to the formation of a single
detectable ion per droplet. The best online preseparation of peptides with
HPLC and MS requires low salt concentration. In addition, reducing the
flow time to nanoliters per minute can increase the time for analysis. Tandem
MS/MS provides better isolation and fragmentation of a specific ion. This
tandem MS/MS technique provides further information about the sequence

1

1
1
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5
5

4

4 4

2

2

2

3

3
3

C

C AD

Gel map

Protein oxidation map

1
5

4

2

3

AD

Fig. 4 Oxidatively modified proteins in Alzheimer’s disease brain (AD) identified by
redox proteomics using expanded two-dimensional oxyblots from Figure 3. 1, enolase;
2, glyceraldehyde 3-phosphate dehydrogenase; 3, carbonic anhydrase II; 4, voltage-dependent
anion channel protein-1; 5, ATP synthase a chain

Table 1 Mass spectrometry search engines for peptidemass fingerprinting

Search engine and URL

Mascot—http://www.matrixscience.com

MOWSE—http://www.hgmp.mrc.ac.uk/Bioinformatics/Webapp/mowse

Profound—http://www.prowl.rocketfeller.edu/sgi-bin/profound

MS-fit—http://www.prospector.ucsf.edu/ucsfhtlm3.4/msfit.htm

Peptident—http://www.expasy.ch.ch/tools/peptident.html
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of the protein [28]. With MS/MS analysis, the isolation of a single ion is
achieved by scanning all of the ions that were generated from a sample, followed
by application of a wide range of frequencies, except for the resonating fre-
quency of the ion of interest. Fragmentation of the isolated ion, which provides
additional information for protein identification or for evaluation of possible
protein modification, is the final step in MS/MS.

The identity of proteins is determined by employing online databases follow-
ing MS analysis. SwissProt, the most commonly used database for protein
identification, is based on computer algorithms [29]. SwissProt and other
databases are available through the Internet; they are listed in Table 1. These
search engines provide theoretical protease digestion of the proteins contained
in the database, to which are compared the experimental masses obtained by
MS. The successful protein identification using these databases also accounts
for several factors, such as protein size and the probability that a single peptide
occurs in the whole database. The search engine produces a probability score
for each entry, which is calculated by amathematical algorithm specific for each
search engine. Any hit with a score higher that the one specific for significance
of the particular search engine is considered statistically significant and has a
valid chance to be the protein cut from a given spot. In addition, the molecular
weight and pI of the protein is calculated based on the position in the 2Dmap to
avoid any false identification. In many cases, validation of protein identifica-
tion is achieved by immunochemical means [13,18,30–34].

In this chapter, we review the redox proteomics identification of oxidatively
modified proteins in AD and Parkinson’s disease (PD), two age-related
neurodegenerative disorders that involve deposition of aggregated proteins
(Ab, synuclein, and parkin) as pathological hallmarks of the respective disorders.

Alzheimer’s Disease

Alzheimer’s disease is an age-related neurodegenerative disorder characterized by
progressive loss of memory and cognition, accumulation of extracellular amyloid
plaques (Ab) and intracellular neurofibrillary tangles (NFTs), and loss of synap-
tic connections in selective brain regions. NFTs consist of aggregates of hyper-
phosphorylated microtubule-associated protein tau that form paired helical
filaments and related straight filaments [35]. Amyloid a-peptide (Ab), a 40- to
42-amino acid peptide derived fromproteolytic cleavage of an integralmembrane
protein known as amyloid precursor protein (APP) by the action of b- and
g-secretases, is the main amyloid component of senile plaque (SP). Ab is thought
to play a casual role in the development and progression of AD [36]. Further-
more, a number of studies suggest that the small oligomers of Ab are the actual
toxic species of this peptide rather than Ab fibrils [37–40].

Several mechanisms have been proposed to explain AD pathogenesis. These
mechanisms include amyloid cascade, excitoxicity, oxidative stress, and
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inflammation. We previously showed that regions of AD brain rich in b have

increased protein oxidation, whereas Ab-poor cerebellum does not [41]. Protein

carbonyls, HNE, and 3-nitrotyrosine levels were found to be elevated in AD

brain and cerebrospinal fluid (CSF) [9,37,41], results that support the oxidative

stress hypothesis of AD. Moreover, the observation that vitamin E in cell

culture diminishes Ab(1-42)-induced oxidative stress and neurotoxicity further

supports a role of oxidative stress in AD pathology [2,42,43]. Ab-induced lipid

peroxidation leads to increased formation of HNE in vitro and also was

observed in AD brain and CSF [8,16,17,44]. Using immunoprecipitation tech-

niques, Lauderback et al. showed the HNE-mediated oxidative modification of

glutamate transporter (GLT-1) in AD brain. GLT-1 is involved in regulating

the levels of glutamate outside the neuron. These researchers also observed that

synaptomes treated with b(1-42) demonstrated HNE-modified GLT-1 [17].

This oxidative modification leads to altered structure [45] and loss of function

of the transport protein, which could eventually lead to excitotoxic neuronal

death (Fig. 5) [46].
One of the mechanisms for removal of HNE from neurons is by conjugation

to GSH, followed by the action of glutathione S-transferase (GST) and the

multidrug resistant protein-1 (MRP-1) to efflux this conjugate from the cell [47].

However, in ADbrain, GST andMRP-1 were demonstrated to have excessively

bound HNE and showed reduced activity, supporting the idea that oxidative

modification leads to loss of functionality [18].
As noted above, there are several serious limitations to the use of immuno-

precipitation to identify proteins, including the requirement of prior identifica-

tion of the protein of interest, the availability of a specific antibody for this

protein, and the extensive time needed for this process. Moreover, sometimes a

posttranslational modification can change the structure of proteins, thereby

preventing the formation of the appropriate antigen–antibody complex. Redox

Glutamate

Excitotoxicity

Disruption of Ca + 2 homeostasis: Free
radical formation

Cell Death

Removal by Glt-1 and
GS

Fig. 5 The glutamate trans-
porter Glt-1 and glutamine
synthase (GS) modulate
glutamate-induced excito-
toxicity. Conversely, if Glt-1
and GS are oxidatively
modified and lose function-
ality, neuronal death can
occur
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proteomics, which couples 2D gel electrophoresis separation of proteins and 2D
Western blots withMS techniques, is highly successful in identifying oxidatively
modified brain proteins [19–21]. Proteomics has enabled us to identify a large
number of oxidatively modified proteins in AD brain and models thereof.

The identification of oxidatively modified proteins in the AD inferior
parietal lobule (IPL) and hippocampus was accomplished by proteomics
[10,13,33,34,48,49]. This research has provided insights into the role of
oxidative stress in AD and has helped to unravel the mechanisms associated
with AD pathology [10,13,33,34,48,49]. Oxidatively modified brain proteins
identified by our redox proteomics approach include creatine kinase BB (CK),
glutamine synthase (GS), ubiquitin carboxy-terminal hydrolase L-1 (UCH
L-1), triose phosphate isomerase (TPI), neuropolypeptide h3, dihydropyrimi-
dinase-related protein 2 (DRP2), a-enolase, phosphoglycerate mutase 1
(PGM1), g-soluble NSF attachment protein (SNAP), carbonic anhydrase II
(CA-II), and peptidyl prolyl cis-trans isomerase (Pin 1). No oxidatively mod-
ified proteins were identified in cerebellum [34], confirming earlier studies [41].

The oxidatively modified proteins in AD brain are involved in known
dysfunctional processes in AD. The identified oxidatively modified proteins
were grouped based on their functions (Table 2) and were linked to AD
pathology, symptomatology, and loss of enzyme activity, consistent with a
plausible mechanism of neurodegeneration [19,20].

Energy Dysfunction

Creatine kinase, TPI, ATP synthase-a, GAPDH, VDAC-1, PGM1, and
a-enolase are enzymes involved in energy metabolism and were identified as
oxidized proteins with reduced activity in AD brain, that could be linked to the
observed decreased ATP production in AD [50] and could be detrimental to
neurons [10,13,30,34,48,49,51]. Decreased ATP production would lead to
impaired ion-motive ATPases, altered protein synthesis, and maintenance of
synaptic transmission, all of which are hallmarks of AD [10,13,30,34,48,49,52].
Decreased ATP production could induce hypothermia, leading to abnormal
tau hyperphosphorylation through differential inhibition of kinase and

Table 2 Proteomic identification of specifically oxidatively modified proteins in AD brain

l Energy dysfunction—creatine kinase; a-enolase; g-enolase; triose phosphate isomerase;
phosphoglycerate mutase 1

l Excitotoxicity—glutamine synthase; glutamate transported by EAAT2
l Proteasomal dysfunction—ubiquitin carboxy-terminal hydrolase L-1
l Lipid abnormalities and cholinergic dysfunction—neuropolypeptide h3
l Neuritic abnormalities—dihydropyrimidinase-related protein 2; b-actin
l Tau hyperphosphorylation—peptidyl prolyl cis-trans isomerase
l Synaptic abnormalities—g-soluble N-ethylmaleimide-sensitive factor attachment protein
l pH buffering and CO2 transport—carbonic anhydrase II
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phosphatase activities, ion pumps, electrochemical gradients, cell potential, and
voltage-gated ion channels [53].

Excitotoxicity

Glutamine synthase and EAAT2 (GLT-1) are involved in regulating extraneur-
onal glutamate levels and neurotransmission. GS and EAAT2 oxidation could
lead to accumulation of glutamate in the synaptic cleft, leading to influx of
calcium into the cell via activation of N-methyl-D-aspartate (NMDA) and
a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors
and causing neuronal excitotoxic death [54]. As noted above, HNE, a lipid
peroxidation product, has been shown to modify oxidatively the glutamate
transporter EAAT2 in AD brain and synaptosomes treated with Ab(1-42) [17].

Proteasomal Dysfunction

When proteins are damaged or aggregated, they become ubiquitinylated, as a
polyubiquitin chain. Such poly (ubiquitin) chains can be as large as 70 units [55].
The poly (ubiquitin) chain is a marker that targets the damaged protein to the
26S proteasome for subsequent degradation. UCH L-1 removes ubiquitin from
the poly (ubiquitin) chain, one ubiquitin unit at a time from the carboxyl terminal
end before insertion of the damaged protein into the core of the proteasome [56].
This has the effect of maintaining the pool of ubiquitin in the brain. Oxidative
modification of UCHL-1 was found in AD brain [34,48,57]. Presumed resultant
decreased UCH L-1 activity in AD brain could lead to depletion of the free pool
of ubiquitin or cause saturation of the proteasome with polyubiquitin chains and
accumulation of damaged proteins, leading to synaptic deterioration and degen-
eration. Decreased activity of UCHL-1 would lead to increased protein ubiqui-
tinylation, decreased proteasomal activity, and accumulation of damaged and
aggregated proteins, all of which are observed in AD brain [20,58]. A recent in
vitro study showed that HNE decreases hydrolase activity of recombinant
UCH-L1 [54,59], and that the HNE-bound protein and crosslinked proteins
could impair proteasomal function [59]. Others recently confirmed the oxidative
modification of UCH L-1 in AD brain using proteomics [57]. Interestingly, if
UCH L-1 is dysfunctional, as it is in the gracile axonal dystrophic mouse,
oxidative modification of important brain proteins occurs [60].

Lipid Abnormalities and Cholinergic Dysfunction

Neuropolypeptide h3 (also known as phosphatidylethanolamine-binding pro-
tein, or PEBP) may play an important role in maintaining phospholipid asym-
metry of the membrane [61]. Oxidative modification of neuropolypeptide h3
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has been observed inADbrain [10]. Because this protein is indirectly involved in
the production of choline acetyltransferase, oxidative modification of neuro-
polypeptide h3 could lead to altered choline acetyltransferase levels. Moreover,
in its role as PEBP, its oxidative modification could lead to apoptosis by the
exposure of phosphatidylserine to the outer bilayer leaflet of the membrane,
leading to cell death and observed cognitive decline in AD [62]. Ab(1-42) and
HNE added to synaptosomes lead to a loss of phospholipid asymmetry [63,64].

Neuritic Abnormalities

DRP-2 is involved in axonal outgrowth and pathfinding through transmission
and modulation of extracellular signals, [65–67 ] and b-actin is involved in cell
integrity. Decreased expression of DRP-2 protein was observed in AD, adult
Down’s syndrome (DS) [68], fetal DS, [69] schizophrenia, and affective disor-
ders.70 Oxidation of DRP-2 and b-actin, as observed in AD brain, [10,37,49]
could be related to the observed shortening of dendrites and synapse loss in AD
brain.71 Shortened dendrites would be predicted to lead to less efficient inter-
neuronal communication, which could be important in a cognitive andmemory
disorder.

Tau Hyperphosphorylation

Peptidyl-prolyl isomerases (PPIases or Pin 1) catalyze the conversion of the cis
to trans conformation and vice versa of proteins between given amino acids and
a proline [72]. Also, PPIases have been shown to be necessary for entry into
mitosis, and they interact with cell cycle regulating proteins (e.g., p53, Myt1,
Wee1, Cdc25C).We determined by proteomics that PPIase (Pin 1) is oxidized in
AD brain [33,34]. This modification conceivably could cause dramatic struc-
tural modifications, which could affect the properties of targeted proteins. One
target for Pin1 is tau, a neuronal cytoskeletal protein, which is hyperpho-
sphorylated in AD [73]. Recent studies show an inverse relation of Pin 1 activity
and co-localization with phosphorylated tau in AD brain [74–76]. In addition,
the cell cycle machinery of AD neurons was reported to be altered in AD brain
[77,78]. Pin 1 oxidation and decreased activity could therefore be involved in the
initial events that trigger tangle formation, cell cycle-related abnormalities, and
oxidative damage [33,34,79]. All these effects can lead to memory loss.

Synaptic Abnormalities and LTP

Oxidation of g-SNAP, a member of the N-ethylmaleimide-sensitive factor
(NSF) attachment proteins (SNAPs), could impair vesicular transport in the
constitutive secretory pathway as well as in neurotransmitter release, hormone
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secretion, and mitochondrial organization [34,80,81]. This, in turn, could lead
to impaired learning and memory processes and altered neurotransmitter sys-
tems in AD brain.

pH Buffering and CO2 Transport

Carbonic anhydrase II plays an important role in regulating cellular pH, CO2

andHCO3
– transport, andmaintaining H2O and electrolyte balance [82]. CA-II

deficiency leads to cognitive defects, varying from disabilities to severe mental
retardation, in addition to osteoporosis, renal tubular acidosis, and cerebral
calcification. Oxidation and decreased activity of this protein was observed in
AD brain compared to age-matched controls [13,34,83]. Oxidization of CA-II
may lead to an imbalance of both the extracellular and intracellular pH in the
cell, mitochondrial alterations in oxidative phosphorylation, and impaired
synthesis of glucose and lipids.Moreover, altered neuronal pH could contribute
to the known protein aggregation in AD brain.

AD Models for Ab(1-42)

Identification of oxidatively modified AD brain proteins was substantially
recapitulated in vitro and in vivo by action of human Ab(1-42) in neuronal
cell cultures, synaptosomes, intracerebral injection into rat basal forebrain, and
expression in Caenorhabditis elegans [31,84–87]. These findings are consistent
with the notion that Ab(1-42) (Fig. 6) contributes to the observed oxidative
stress and oxidative modification of proteins in AD brain [4,19,20].

Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative dis-
order affecting the population of age 65 and older [88]. Clinical symptoms of
PD, such as bradykinesia, resting tremor, cogwheel rigidity, and postural
instability, result from loss of dopaminergic neurons in the substantia nigra
compacta. Mutations in a-synuclein, parkin, DJ-1, and PINK1 contribute to
early-onset familial PD [89]. Four mutations of a-synuclein have been identified
in familial PD: A53T, A30P, E46A, and genomic duplication [90,91].

Oxidative damage is a well known pathological change in PD brains [92–95].
Overexpression of wild-type or mutant a-synuclein induces toxicity that is
associated with oxidative stress [96]. Moreover, oxidative stress in PD is linked
to cell death in PD brains by mitochondrial dysfunction, excitotoxicity, and the
toxic effects of nitric oxide [94].
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Redox Proteomics in PD

a-Synuclein has a strong tendency to aggregate, leading to neurotoxicity. Expres-
sion of mutant a-synuclein in cells produces increased oxidative parameters and

accelerated cell death in response to oxidative insult [97]. Symptoms in A30P

a-synuclein transgenic mice occur in parallel with the aggregation of a-synuclein,
[98] and these mice develop an age-dependent accumulation of a-synuclein in

neurons of the brain stem [99,100], suggesting that a-synuclein aggregation-

associated oxidative stress is involved in the pathology in A30P a-synuclein
transgenic mice.

Using redox proteomics, several significantly oxidatively modified brain

stem proteins were identified in symptomatic mice with overexpression of a

A30P mutation in a-synuclein compared to the brain proteins from the

nontransgenic mice. These proteins were identified as carbonic anhydrase 2

(CA-II), a-enolase (ENO1), and lactate dehydrogenase 2 (LDH2) [101]. The

activities of these enzymes were also significantly decreased in the A30P

a-synuclein transgenic mice brains when compared to the brain proteins

from nontransgenic control [101]. This observation is consistent with the

notion that oxidative modification of proteins leads to loss of their activities

[16–18,41].
Carbonic anhydrase II, which, as noted above, is an oxidatively modified

protein in AD brain, is a Zn2+ metalloenzyme that catalyzes reversible hydra-

tion of CO2 to bicarbonate (HCO3–). CA-II shares high (68%) similarity to the

mitochondrial counterpart carbonic anhydrase 5a (CA-5a) and 5b (CA-5b),

implicating the potential coupling or interaction with each other to function in
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metabolic processes, cellular transport, gluconeogenesis, and mitochondrial
metabolism [102,103]. Oxidative modification of CA-II may lead to loss of
the buffering system in brains with resultant aggregation of synuclein and
subsequent neurodegeneration.

LDH2 is a subunit of lactate dehydrogenase (LDH), a glycolytic protein that
catalyzes the reversible interconversion of pyruvate to lactate. Lactate is the
predominant monocarboxylate oxidized by mitochondria for intracellular lac-
tate transport [104]. Therefore, oxidative inactivation of LDH may contribute
to mitochondrial dysfunction in PD patients.

Eno1 is a subunit of enolase that interconverts 2-phosphoglycerate and
phosphoenolpyruvate during glycolysis. Enolase was identified in an intermem-
brane space/outer mitochondrial membrane fraction [105]. These studies sug-
gest that enolase is present in mitochondria and contributes to mitochondrial
function. Therefore, oxidative inactivation of enolase may alter normal glyco-
lysis and mitochondrial function in brains and may contribute to the alteration
of energy metabolism in PD. Interestingly, LDH2 and ENO1 (possibly CA II)
are associated with mitochondrial function. Increasing data implicate mito-
chondrial dysfunction and oxidation in PD [94,106–108]. Furthermore,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone lead to
mitochondrial dysfunction with increased oxidative modification of proteins
and a-synuclein aggregation [109–112].Moreover, DJ-1, PINK1, and parkin all
appear to modulate mitochondrial function [113–115]. The observation that
each of the oxidatively modified brain proteins in A30P mutant synuclein mice
is associated with mitochondria provides strong evidence for the notion that
mitochondrial dysfunction contributes to the toxicity of PD and implicates
mitochondrial pathology in toxicity associated with aggregated synuclein.
This suggests that the oxidative stress-mediated mitochondrial dysfunction
may be responsible, at least partially, for the neurodegeneration in the brains
of A30P a-synuclein transgenic mice. Furthermore, this oxidative stress-
mediated impaired energy metabolism and mitochondrial dysfunction is con-
tributed by the oxidative inactivation of ENO1, LDH2, and CA-II. Therefore,
the mitochondria dysfunction in familial PD may be associated with the oxida-
tive inactivation of ENO1, LDH2, and CA-II.

Conclusions

The application of redox proteins to AD brain revealed important targets of
protein oxidation. The use of in vivo and in vitro models of AD with human
Ab(1-42), which led to the identification of oxidatively modified proteins simi-
lar to those found in AD brain, provided strong evidence of the oxidative stress
and neurotoxicity associated with Ab(1-42) in AD brain. The use of relevant
models for AD could be a powerful tool to investigate the role and mechanisms
of Ab(1-42) in the pathogenesis of AD. Furthermore, the use of animal models
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together with redox proteomics approaches have provided potential insights

into the mechanisms of neurodegeneration in AD and PD and may also be of

value in the development of therapeutic approaches to prevent or delay these

neurodegenerative disorders.
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