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UANTITATIVE PROTEOMICS ANALYSIS OF SPECIFIC PROTEIN
XPRESSION AND OXIDATIVE MODIFICATION IN AGED

ENESCENCE-ACCELERATED-PRONE 8 MICE BRAIN
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bstract—The senescence-accelerated mouse (SAM) is a
urine model of accelerated senescence that was estab-

ished using phenotypic selection. The SAMP series includes
ine substrains, each of which exhibits characteristic disor-
ers. SAMP8 is known to exhibit age-dependent learning and
emory deficits. In our previous study, we reported that
rains from 12-month-old SAMP8 have greater protein oxida-
ion, as well as lipid peroxidation, compared with brains from
-month-old SAMP8 mice. In order to investigate the relation
etween age-associated oxidative stress on specific protein
xidation and age-related learning and memory deficits in
AMP8, we used proteomics to identify proteins that are
xpressed differently and/or modified oxidatively in aged
AMP8 brains. We report here that in 12 month SAMP8 mice
rains the expressions of neurofilament triplet L protein,

actate dehydrogenase 2 (LDH-2), heat shock protein 86, and
-spectrin are significantly decreased, while the expression
f triosephosphate isomerase (TPI) is increased compared
ith 4-month-old SAMP8 brains. We also report that the spe-
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er of Membrane Sciences, and Sander-Brown Center on Aging, Uni-
ersity of Kentucky, Lexington, KY 40506-0055, USA. Tel: �1-859-
57-3184; fax: �1-859-257-5876.
-mail address: dabcns@uky.edu (D. A. Butterfield).
bbreviations: A�, amyloid-�; AD, Alzheimer’s disease; ALS, amyo-

rophic lateral sclerosis; CK, creatine kinase; CRMP, collapsin re-
ponse mediator protein; DNP, 2,4-dinitrophenyl hydrazone; DRP-2,
ihydropyrimidinase-like protein 2; DS, Down syndrome; hsp86, heat
hock protein 86; LDH, lactate dehydrogenase; LDH-2, lactate dehy-
rogenase 2; NF, neurofilament; NF-L, neurofilament triplet L protein;
SE, neuron-specific enolase; SAM, senescence-accelerated mouse;
AMP, senescence-accelerated-prone mice; SAMR, senescence-
ccelerated-resistant mice; TCA, trichloroacetic acid; TPI, triosephos-
hate isomerase; BCIP/NBT, 5-Bromo-4-chloro-3-indolyl phosphate/
litroblue tetrazolium.
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ific protein carbonyl levels of LDH-2, dihydropyrimidinase-
ike protein 2, �-spectrin and creatine kinase, are significantly
ncreased in the brain of 12-month-old SAMP8 mice when
ompared with the 4-month-old SAMP8 brain. These findings
re discussed in reference to the effect of specific protein
xidation and changes of expression on potential mecha-
isms of abnormal alterations in metabolism and neuro-
hemicals, as well as to the learning and memory deficits in
ged SAMP8 mice. © 2004 IBRO. Published by Elsevier Ltd.
ll rights reserved.

he senescence-accelerated mouse (SAM) is a model of
ccelerated senescence that was established through
henotypic selection from a common genetic pool of
KR/J strain of mice (Takeda et al., 1981). The SAM
odel consists of senescence-accelerated-prone mice

SAMP), which exhibit accelerated aging with a shortened
ife span and increased amyloidosis, and senescence-
ccelerated-resistant mice (SAMR), which exhibit normal
ging characteristics (Miyamoto, 1997). The SAMP series

ncludes nine substrains, each of which exhibits character-
stic disorders, such as loss of normal behavior, various
kin lesions, or increased lordokyphosis. SAMP8 exhibits
ge-dependent learning and memory deficits (Yagi et al.,
988; Ohta et al., 1989). Therefore, SAMP8 is a model for
tudying age-related cognitive impairments.

Comparing aged SAMR1 mice to SAMP8, the aged
AMP8 shows impairments in learning tasks, altered emo-

ion, abnormality of circadian rhythm (Miyamoto, 1997),
nd increased oxidative stress (Butterfield et al., 1997).
reliminary evidence also showed that the dendritic arbor
f dentate granule cells in the SAMP8 are reduced in size
nd complexity when compared with that of SAMR1 (Mor-

ey et al., 2002). Evidence strongly suggests that a cause
f the cognitive decline in the SAMP8 is an age-related
verexpression of the precursor to amyloid-� (A�) in the
ippocampus and other brain regions (Morley et al., 2000).
nlike transgenic mice that have five to 14 times the
ormal amount of A� in their brains, SAMP8 have only
bout a 100% increase of A� between 4 month and 12
onths of age (Kumar et al., 2001), which is much closer

o the estimated 50% increase in A� seen in AD (Rosen-
erg, 2000). Established cognitive deficits in 12-month-old
AMP8 mice can be reversed with either A�-directed an-

ibody or A�-directed antisense (Maekawa et al., 1993;
umar et al., 2000; Morley et al., 2000; Banks et al., 2001).

n addition, SAMP8 mice develop amyloid plaques in the

ate stage of their life (Morley et al., 2000) after the learning
ved.
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nd memory deficits have developed (Nomura et al.,
996).

Aged SAMP8 mice also show clear age-related impair-
ents in learning assessed by foot shock avoidance

Flood and Morley, 1993; Flood et al., 1995, 1996), which
orrelate with oxidative stress parameters (Farr et al.,
003). These observations are consistent with the theory
f aging that postulates that the oxidative modification by
ree radicals on biomolecules, such as proteins, are re-
ponsible for the functional deterioration related to aging
Harman, 1969). Treating aged SAMP8 mice with antioxi-
ants, such as lipoic acid, N-acetylcysteine, L-acetylcarni-

ine, and melatonin, not only decreases oxidative stress in
ged SAMP8 brains, but also improves their learning and
emory (Okatani et al., 2002; Yasui et al., 2002; Farr et al.,
003). This indicates that oxidative stress is involved in the

mpairment of learning and memory as observed in the
AMP8 mouse. Whereas changes in metabolism and neu-

ochemicals were detected in SAMP8 mice (Ikegami et al.,
992; Shimano, 1998), at present, little is known about the
echanism underlying the oxidative stress associated

earning and memory deficit observed in aged SAMP8
ice.

In our previous study, we showed that 12-month-old
AMP8 mice have higher protein oxidation, and lipid per-
xidation compared with 4-month-old SAMP8 (Farr et al.,
003). In order to investigate the relations among age-
elated oxidative stress on proteins, physiological alter-
tions and impairments in learning and memory, we used
roteomics to identify brain proteins that are expressed
ifferently and oxidatively modified with aging in SAMP8
ice.

EXPERIMENTAL PROCEDURES

odent subjects

xperimentally naive, 4- and 12-month-old male SAMP8 were
btained from our breeding colony. The colony is derived from
iblings generously provided by Dr. Takeda of Kyoto University,
apan, and has been maintained as an inbred strain for 12 years
nder clean-room procedures (i.e. use of sterile gloves in handling
ice, sterilized cages and bedding, restricted access to breeding
rea), and housed in microisolator HEPA filter units (Allentown
aging, Allentown, PA, USA). The colony routinely undergoes
erological testing for viral and bacterial contamination and has
emained free of pathogens for over 5 years. Mice are housed in
ooms with a 12-h light/dark cycle (lights on at 06:00 h) at 20–
2 °C with water and food (Richmond Laboratory Rodent Diet
001) available ad libitum. All experiments were conducted after

nstitutional approval of the animal use subcommittee, which sub-
cribes to the NIH Guide for Care and Use of Laboratory Animals.
ix 4-month-old and six 12-month-old SAMP8 animals were used

n this study. This number was the minimum number of animals to
est for significance. Methods to kill the animals and harvest the
rain were approved and involved no or only transient minimal
ain.

ample preparation

ix 4-month-old and six 12-month-old SAMP8 brains were flash
rozen in liquid nitrogen in St. Louis and sent to Lexington on dry
ce overnight. Brain samples were homogenized in a lysis buffer

10 mm HEPES, 137 mm NaCl, 4.6 mm KCl, 1.1 mm KH2PO4, a
.6 mm MgSO4 and 0.5 mg/mL leupeptin, 0.7 �g/mL pepstatin,

.5 �g/mL trypsin inhibitor, and 40 �g/mL PMSF). Homogenates
ere centrifuged at 15,800�g for 10 min to remove debris. The
upernatant was extracted to determine the concentration by the
CA method (Pierce, Rockford, IL, USA).

wo-dimensions electrophoresis

amples of brain proteins were prepared according to the proce-
ure of Levine et al. (1994). Two hundred micrograms of protein
ere incubated with four volumes of 2 N HCl at room temperature

25 °C) for 20 min. Proteins were then precipitated by addition of
ce-cold 100% trichloroacetic acid (TCA) to obtain a final concen-
ration of 15% TCA. Samples are placed on ice for 10 min to allow
recipitation of proteins. Precipitates were centrifuged at
5,800�g for 2 min. The pellets were washed with 1 ml of 1:1 (v/v)
thanol/ethyl acetate solution. After centrifugation and washing
ith ethanol/ethyl acetate solution three times, the samples were
issolved in 25 �l of 8 M urea (Bio-Rad, Hercules, CA, USA). The
amples then were mixed with 185 �l of rehydration buffer (8 M
rea, 20 mM dithiothreitol, 2.0% (w/v) CHAPS, 0.2% Biolytes, 2 M
hiourea and Bromophenol Blue).

In first-dimension electrophoresis, 200 �l of sample solution
ere applied to a ReadyStrip IPG strip (Bio-Rad). The strips were
oaked in the sample solution for 1 h to allow uptake of the
roteins. The strip is then actively rehydrated in protean IEF cell
Bio-Rad) for 16 h at 50 V. The isoelectric focusing was performed
t 300 V for 2 h linearly; 500 V for 2 h linearly; 1000 V for 2 h

inearly, 8000 V for 8 h linearly and 8000 V for 10 h rapidly. All the
rocesses above were carried out at 22 °C. The strip was stored
t �80 °C until second dimension electrophoresis was performed.

For second dimension electrophoresis, IPG Strips pH 3–10
ere equilibrated for 10 min in 50 mM Tris–HCl (pH 6.8) contain-

ng 6 M urea, 1% (w/v) sodium dodecyl sulfate, 30% (v/v) glycerol,
nd 0.5% dithiothreitol, and then re-equilibrated for 15 min in the
ame buffer containing 4.5% iodoacetamide in place of dithiothre-
tol. Linear Gradient Precast criterion Tris-HCl gels (8–16%; Bio-
ad) were used to perform second dimension electrophoresis.
recision Protein standards (Bio-Rad) were run along with the
ample at 200 V for 65 min.

The gel was incubated in fixing solution (7% acetic acid, 40%
ethanol) for 20 min after the second dimension electrophoresis.
pproximately, 60 ml of Bio-Safe Coomassie Blue were used to
tain the gel for 2 h. The gels were placed in deionized water
vernight.

estern blotting

rotein (200 �g) was incubated with four volumes of 20 mM
NPH at room temperature (25 °C) for 20 min. The gels were
repared in the same manner as 2D-electrophoresis. The proteins
rom the second dimension electrophoresis gels were transferred
o a nitrocellulose paper (Bio-Rad) using the Transblot-Blot SD
emi-Dry Transfer Cell (Bio-Rad) at 15 V for 4 h. The 2,4-
initrophenyl hydrazone (DNP) adduct of the carbonyls of the
roteins was detected on the nitrocellulose paper using a primary
abbit antibody (Intergen) specific for DNP-protein adducts (1:100)
nd then a secondary goat anti-rabbit IgG (Sigma) antibody. The
esultant stain was developed by application of Sigma-Fast 5-Bro-
o-4-chloro-3-indolyl-phosphate/Nitrobule tetrazolium (BCIP/
BT) tablets.

mage analysis

he gels and nitrocellulose papers were scanned and saved in
IFF format using Scanjet 3300C (Hewlett Packard, Palo Alto, CA,
SA). Investigator HT analyzer (Genomic Solutions Inc., Ann
rbor, MI, USA) was used for matching and analysis of 56 visu-

lized protein spots among differential gels and oxyblots. The
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rinciples of measuring intensity values by 2-D analysis software
ere similar to those of densitometric measurement. Average
ode of background subtraction was used to normalize intensity

alue, which represents the amount of protein (total protein on gel
nd oxidized protein on oxyblot) per spot. After completion of spot
atching, the normalized intensity of each protein spot from indi-

idual gels (or oxyblots) was compared between groups using
tatistical analysis.

rypsin digestion

amples were prepared using the techniques described by
ensen et al. (1999), and as modified by Thongboonkerd et al.
2002). The protein spots that shown different expression and/or
xpression by image analysis were excised with a clean blade and
ransferred into clean microcentrifuge tubes. The protein spots
ere then washed with 0.1 M ammonium bicarbonate (NH4HCO3)
t room temperature for 15 min. Acetonitrile was added to the gel
ieces and incubated at room temperature for 15 min. The solvent
as removed, and the gel pieces were dried in a flow hood. The
rotein spots were incubated with 20 �l of 20 mM DTT in 0.1 M
H4HCO3 at 56 °C for 45 min. The DTT solution was then re-
oved and replaced with 20 �l of 55 mM iodoacetamide in 0.1 M
H4HCO3. The solution was incubated at room temperature in the
ark for 30 min. The iodoacetamide was removed and replaced
ith 0.2 ml of 50 mM NH4HCO3 and incubated at room tempera-

ure for 15 min. Acetonitrile (200 �l) was added. After a 15-min
ncubation, the solvent was removed, and the gel spots were dried
n a flow hood for 30 min. The gel pieces were rehydrated with 20
g/�l modified trypsin (Promega, Madison, WI, USA) in 50 mM
H4HCO3 with the minimal volume to cover the gel pieces. The
el pieces were chopped into smaller pieces and incubated at
7 °C overnight in shaking incubator.

ass spectrometry

ll mass spectra reported in this study were acquired from the
niversity of Kentucky Mass Spectrometry Facility. LC/MS/MS
pectra were acquired on a Finnigan LCQ ‘Classic’ quadrupole ion
rap mass spectrometer (Finnigan, Bremen, Germany). Separa-
ions were performed with an HP 1100 HPLC modified with a
ustom splitter to deliver 4 �L/min to a custom C18 capillary
olumn (300 �m id�15 cm, packed in-house with Macrophere 300
�m C18 (Alltech Associates). Gradient separations consisted of
min isocratic at 95% water:5% acetonitrile (both phases contain
.1% formic acid), the organic phase was increased to 20% ace-

onitrile over 8 min, then increased to 90% acetonitrile over 25
in, held at 90% acetonitrile for 8 min, then increased to 95% in
min, and finally returned to initial conditions in 10 min (total

cquisition time 45 min with a 10-min recycle time). Tandem mass
pectra were acquired in a data dependent manner. Three mi-
roscans were averaged to generate the data-dependent full scan
pectrum. The most intense ion was subjected to tandem mass
pectrometry and three microscans were averaged to produce the
S/MS spectrum. Masses subjected to the MS/MS scan were
laced on an exclusion list for 2 min. The tandem spectra obtained
ere searched against the NCBI protein databases using the
ASCOT search engine (http://www.matrixscience.com). MS/MS

pectra, the peptides were also assumed to be monoisotopic,
xidized at methionine residues and carbamidomethylated at cys-

eine residues. A 0.8-Da MS/MS mass tolerance was used for
earch of the NCBI protein databases.

A Bruker Autoflex MALDI TOF (matrix assisted laser desorp-
ion ionization-time of flight) mass spectrometer (Bruker Daltonic,
illerica, MA, USA) operated in the reflectron mode was used to
enerate peptide mass fingerprints. Peptides resulting from in-gel
igestion with trypsin were analyzed on a 384 position, 600 �m
nchorChip Target (Bruker Daltonics, Bremen, Germany) and

repared according to AnchorChip recommendations (Anchor- w
hip Technology, Rev. 2; Bruker Daltonics, Bremen, Germany).
riefly, 1 �l of digestate was mixed with 1 �l of �-cyano-4-
ydoxycinnamic acid (0.3 mg/ml in ethanol:acetone, 2:1 ratio)
irectly on the target and allowed to dry at room temperature. The
ample spot was washed with 1 �l of a 1% TFA solution for
pproximately 60 s. The TFA droplet was gently blown off the
ample spot with compressed air. The resulting diffuse sample
pot was recrystallized (refocused) using 1 �l of a solution of
thanol: acetone:0.1% TFA (6:3:1 ratio). Reported spectra are a
ummation of 100 laser shots. External calibration of the mass
xis was used for acquisition and internal calibration using either
rypsin autolysis ions or matrix clusters was applied post acquisi-
ion for accurate mass determination.

The MALDI and tandem spectra used for protein identification
rom tryptic fragments were searched against the NCBI protein
atabases using the MASCOT search engine (http://www.matrix-
cience.com). Peptide mass fingerprinting used the assumption
hat peptides are monoisotopic, oxidized at methionine residues
nd carbamidomethylated at cysteine residues (Butterfield and
astegna, 2003; Butterfield et al., 2003; Castegna et al., 2002a,b,
003). Up to one missed trypsin cleavage was allowed, although
ost matches did not contain any missed cleavages. Mass toler-
nce of 150 ppm was the window of error allowed for matching the
eptide mass values.

tatistics

he data of protein level and protein specific carbonyl level were
nalyzed by Student’s t-test. A value of P�0.05 was considered
tatistically significant.

RESULTS

rotein expression level

roteomics was used to study oxidized proteins in AD
Castegna et al., 2002a,b, 2003). The specific carbonyl
evels were obtained by dividing the carbonyl level of a
rotein spot on the nitrocellulose membrane by the protein

evel of its corresponding protein spot on the gel. Such
umbers give the carbonyl level per unit of protein. We
ound that in comparison to 4-month-old SAMP8 mice,
2-month-old SAMP8 mice brain have five proteins that
re expressed significantly differently and five proteins that
ave significantly higher specific carbonyl levels. All the
ass spectra (not shown) of the peptides were matched to

he mass spectra in NCBI protein databases. The identified
roteins are listed in Table 1. The probability-based
owse score is assigned for each spectrum to indicate the
robability that the match between the database and the
pectra is a random event. Scores greater than 66 were
onsidered significant. Thus, if a match has a score higher
han 66, the probability of the match being a random event
s lower than 0.05. All protein identifications agree with the
xpected MrW and pI range based on their positions on the
el.

Fig. 1 shows a gel for 2D-electrophoresis after Coo-
assie Blue staining. The proteins that were expressed
ifferently in SAMP8 brains are summarized in Table 2.
he expression of neurofilament triplet L protein (NF-L),

actate dehydrogenase 2 (LDH-2) and heat shock protein
6 (hsp86), �-spectrin are significantly decreased,

hereas the expression of triosephosphate isomerase
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TPI) was significantly increased in brain from12-month-
ld SAMP8 mice.

pecific protein carbonyl level

ig. 2 shows an example of a Western blot for detection of
he level of protein carbonyl. The summary of the specific
rotein carbonyl levels is given in Table 3. The specific
rotein carbonyl levels of LDH-2, dihydropyrimidinase-like
rotein 2 (DRP-2), �-spectrin and creatine kinase (CK) are
ignificantly increased in the brain of 12-month-old
AMP8. The specific carbonyl level of �-enolase was
howed a trend toward being higher in 12-month-old
AMP8 with P-value lower than 0.07.

DISCUSSION

ere, we used proteomics to investigate the expression of
roteins and their oxidative stress in the brains from aged
AMP8 mice, a potential animal model of Alzheimer’s
isease (AD). Proteomics analysis previously was used to

dentify oxidized and nitrated protein in AD patients (Ca-
tegna et al., 2002a,b, 2003). Those studies found that
-enolase, CK, and DRP-2 are more oxidized, and �-eno-

ase and TPI are significantly more nitrated in AD brains
hen compared with age-matched controls (Butterfield et
l., 2002; Castegna et al., 2002b, 2003). The current study
hows that the specific protein carbonyl levels of LDH-2, �-
nolase, �-spectrin and DRP-2 were significantly in-
reased, and the protein expression level of TPI, LDH-2,
F-L, �-spectrin and hsp86 were significantly changed in
2-month-old SAMP8 mouse brains compared with brains
or 4-month-old SAMP8 mice.

�-Enolase is a subunit of enolase, the other subunits
eing �- and �-enolase. �-Enolase is present during em-
ryonic development and switches to � or �, concurring
ith terminal differentiation of the muscle or neuron (Gial-

ongo et al., 1990). Two of the subunits form active enolase
soforms (��, ��, ��, �� and ��), which interconvert
-phosphoglycerate and phosphoenolpyruvate. Since ��
nd �� isoforms are predominantly in the brain, they are
alled neuron-specific enolases (NSE; Keller et al., 1994).
SE has been used as a neuronal marker for structural
amage (el-Mallakh et al., 1992) and as marker for neuro-
al metabolic properties (Trapp et al., 1981; Marangos and

able 1. Summary of proteins identified by mass spectrometry

dentified protein gI accession
#

# Peptides
match
identified

% Coverag
matched
peptides

DH 2 gi	6678674 14 41
K gi	10946574 8 29
-Enolase gi	12963491 17 47
PI gi	1864018 5 21
RP-2 gi	1351260 14 35
-Spectrin 2 gi	31543764 30 10
F-L gi	417355 18 37
sp86 gi	26345918 7 9
chmechel, 1987; Hamre et al., 1989). It has also been a
eported that the expression of NSE coincides with the
nset of synaptic connections (Maxwell et al., 1982; White-
ead et al., 1982; Hedgecock et al., 1985). These studies
how that enolase is not only involved in metabolism, but
lso in cell differentiation and normal growth in brains. In
rimary human fetal mixed brain cell cultures, the NSE

evel decrease correlates with the treatment of A� (1–40)
Hayes et al., 2002). Although the level of NSE is not
ignificantly altered in the aged brain (Kato et al., 1990) or

n the AD brain (Kato et al., 1991), �-enolase specific
arbonyl level and protein level (Schonberger et al., 2001;
astegna et al., 2002b) are increased in the AD brain
hen compared with age-matched controls, suggesting

hat the loss of activity by oxidative modification of �-
nolase is compensated for by its increased protein level.
t was shown that a decline of enolase activity results in
bnormal growth and reduced metabolism in brain (Tholey
t al., 1982). The current study showed that the specific
arbonyl level of �-enolase is significantly increased, while
he protein level of �-enolase is not, suggesting that the
ctivity of �-enolase is reduced in SAMP8 brain. This,
onceivably, could reflect ATP levels with consequent del-
terious sequelae.

LDH-2 is a subunit of lactate dehydrogenase (LDH).
he five isoenzymes of tetrameric LDH are found in vari-
us proportions of different somatic tissues in the combi-
ation of the A and B subunit in mammals (Sakai et al.,
987). LDH is also a glycolytic protein that catalyzes the
eversible NAD-dependent interconversion of pyruvate to
-lactate. A single mutation in LDH-2 lower the activity of
DH (Maekawa et al., 1993; Sudo et al., 1994) suggesting
hat the LDH-2 subunit is critical to LDH activity. LDH
elease is a common indicator of damage to plasma mem-
rane integrity. Lactate appears to be the only oxidizable
nergy substrate available to support neuronal recovery
Schurr et al., 1997a,b). Although the activity of LDH
hows no significant difference in AD compared with
atched-age controls (Chandrasekaran et al., 1994),
any studies show that LDH activity in rat brains declined
ith increased age (Mizuno and Ohta, 1986; Ferrante and
menta, 1987; Hrachovina and Mourek, 1990; Agrawal et
l., 1996). Total LDH activity in the brains of aged rats that
ere raised under chronic hypoxia is also diminished (Lai
t al., 2003). Since aging and chronic hypoxia are highly

I, MrW MALDI HPLC
MS/MS

Mowse
score

Probability of
a random hit

.87, 36.6 X 632 2�10�62

.52, 42.7 X 80 1�10�8

.69, 47.1 X 947 2�10�95

.19, 26.7 X 68 1.6�10�7

.16, 62.16 X 776 2.5�10�78

.28, 156.1 X 231 7.9�10�24

.40, 61.5 X 992 6.3�10�100

.82, 84.7 X 73 5�10�8
e p

5
5
6
7
6
5
4
4

ssociated with oxidative stress (Hensley et al., 1995;
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utterfield and Stadtman, 1997; Butterfield et al., 1999; Fu
t al., 2003; Ozaki et al., 2003), the above studies suggest
hat the observed LDH activity loss may be caused by the
xidative modification of the enzyme. Our current study
hows direct evidence that LDH-2 is significantly modified
y oxidative insults in aged SAMP8 brains.

TPI catalyzes the reversible interconversion of glycer-
ldehyde 3-phosphate and dihydroxyacetone phosphate
uring glycolysis. A case study in 1982 reported that a
2-year-old girl who had chronic nonspherocytic hemolytic
emia, due to TPI deficiency, eventually developed cere-
ellar dysfunction and spasticity with hyperreflexia (Clay et
l., 1982). Also, inhibition of TPI by �-monochlorohydrin
auses decreased neuronal ATP production followed by
rogressive neuronal death (Sheline and Choi, 1998).
herefore, if TPI is oxidized or nitrated in AD (Castegna et
l., 2003), lower activity of TPI should be observed. How-

Fig. 1. (A) Proteins from 12-month-old SAMP
ver, the activity of TPI is not altered in either AD patients t
Meier-Ruge et al., 1984) or demented patients (Iwangoff
t al., 1980). The current study provides a possible expla-
ation: since the level of TPI in aged SAMP8 brains is
ignificantly increased, the “non-specific” carbonyl level
ust also increase to maintain a similar (94%) specific

arbonyl level between the 4-month-old and 12-month-old
AMP8. Thus, the increase in TPI levels compensate for

he decreased activity of oxidized TPI. As a result, no net
ecrease in TPI activity is observed. Consistent with this
xplanation, the oxidative stress associated with hypoxia is
ccompanied by an increase in the TPI protein level (Lush-
hak et al., 1998). This is consistent with an upregulation of
PI to compensate for its loss of activity by oxidative
odification.

CK, which is highly sensitive to oxidation, is found in
he cytoplasm and mitochondria of cells which catalyze the
eversible transfer of high energy phosphoryl groups be-

(B) Proteins from 4-month-old SAMP8 brain.
8 brain.
ween ATP and creatine phosphate (Schlegel et al., 1990;



W
1
b
e
B
t
m
p
m
l
a
e
1

s
c

i
i
c
a
b
g
i
s
o
z
a
p
s
a
c
e
e
t
O
t
r
S

T
b
g

I
p

T
L
�

N
h

H. F. Poon et al. / Neuroscience 126 (2004) 915–926920
allimann et al., 1992; Wyss et al., 1992; Kaldis et al.,
994). It is proposed that three CK genes exist (Eppen-
erger et al., 1967; Sobel et al., 1972; Roberts, 1980) to
ncode the three protein subunits, designated M (muscle),

(brain), and mitochondrial (Mi). These subunits form
hree dimeric cytosolic (MM, BB and MB) and one distinct
itochondrial (Mi-CKs) isoenzymes. In AD brains, the ex-
ression of CK-BB is decreased compared with age-
atched controls (David et al., 1998). It is also well estab-

ished that oxidative modification of CK-BB decreases its
ctivity in aging, AD and other neurodegenerative dis-
ases (Aksenova et al., 1998, 1999, 2000; Yatin et al.,
999; Castegna et al., 2002a). Our current study also

able 2. Change of protein expression in 12-month-old SAMP8 mice
rains compared to 4-month-old SAMP8 mice brains (n
6 for each
roup)

dentified
rotein

Protein levels
(% control�S.E.M.)

P-value

PI 122�6 �0.01
DH-2 22�4 �0.05
-Spectrin 2 66�6 �0.005
F-L 74�4 �0.05
sp86 52�7 �0.005

Fig. 2. (A) Carbonyl immuno-blot from 12-month-old
hows that CK in aged SAMP8 brain is oxidized signifi-
antly, which therefore affects its activity to produce ATP.

Glucose metabolism has been reported to be reduced
n aged SAMP8 mice (Shimano, 1998). Our current study
ndicates that the reduced ATP production is possibly
aused by a loss of activity of specific glycolytic enzymes
nd of CK by oxidative modification. Since 20% of ATP in
rain is produced from glycolysis, loss of activity of the
lycolytic enzymes by oxidative modification would signif-

cantly decrease the energy availability to neurons and
ynaptic elements, and ATP is needed to defend against
xidative stress. It may be that this loss of glycolytic en-
yme function is related to the abnormally low levels of
cetylcholine found in aged SAMP8 brains and hip-
ocampi (Ikegami et al., 1992). Choline is derived from
erine, an endogenous product from glycolysis. The loss of
ctivity of glycolytic enzymes and CK by oxidative modifi-
ation could reduce the production of the substrate, glyc-
rate-3-phosphate, needed to generate serine endog-
nously, therefore potentially accounting for the lowered
he concentration of choline for acetylcholine synthesis.
ur current study is consistent with the notion that oxida-

ive modification of CK and glycolytic enzymes may be
esponsible for the altered level of acetylcholine reported in
AMP8 mice. In addition, ATP is needed for LTP and other

(B) Carbonyl immuno-blot from 4-month-old SAMP8.
SAMP8.
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odes of learning and memory (Wieraszko and Ehrlich,
994; Fujii et al., 1995; Chen et al., 1996; Hoyer, 2003;
amazaki et al., 2003). If ATP levels are decreased due in
art to oxidized �-enolase in aged SAMP8 mice, learning
nd memory could be affected.

DRP-2 is one of the four members of the
ihydropyrimidinase-related protein family (DRP-1, -2, -3
nd -4), which were originally identified in humans by their
omology to dihydropyrimidinase (Hamajima et al., 1996;
ang and Strittmatter, 1996; Kato et al., 1998). Other

on-human counterparts of the human DRPs are chicken
ollapsin response mediator protein (CRMP-62; Goshima
t al., 1995), rat turned on after division (TOAD)-64 (Min-
urn et al., 1995), and mouse unc-33-like phosphoprotein
Ulip). The DRP family is involved in axonal outgrowth and
ath finding through transmission and modulation of extra-
ellular signals (Goshima et al., 1995; Minturn et al., 1995;
yk et al., 1996). It was reported that CRMP-2 can induce
rowth cone collapse (Goshima et al., 1995; Wang and
trittmatter, 1996) by Rho-kinase phosphorylation

Arimura et al., 2000), and by binding to tubulin het-
rodimers and bundled microtubules as carriers to pro-
ote microtubule assembly and dynamics (Gu and Ihara,
000; Fukata et al., 2002). Many neurodegenerative dis-
ases are associated with DRP-2. The mutation in the
nc-33 gene results in uncoordinated movements and ab-
ormal swelling of axonal endings with premature termi-
ation (Pasterkamp et al., 1998). Decreased expression of
RP-2 protein has been observed in AD, adult Down
yndrome (DS; Lubec et al., 1999), fetal DS (Weitzdoerfer
t al., 2001), schizophrenia, and affective disorders
Johnston-Wilson et al., 2000). The deranged DRP-2
RNA level in DS (Lubec et al., 1999) and the increased

pecific carbonyl level of DRP2 in AD (Castegna et al.,
002b) were reported previously. These studies suggested
hat the loss of DRP-2 activity, resulting from either re-
uced expression or oxidative modification, disturbs neural
evelopment and plasticity in the CNS, resulting in mental
etardation and impairment in learning and memory. Our
tudy here found that the oxidative modification of DRP2 is
ignificantly increased in the 12-month-old SAMP8 mouse
rain. This suggests that oxidative modification of DRP2
lays an important role in the memory and learning deficit
bserved in aged SAMP8. For example, one can conceive
cenarios by which shortened dendrite lengths, due in part
o oxidative modification of DRP2, would lead to decreased
nterneuronal communication, thereby, affecting learning

able 3. Brain proteins oxidized in 12-month-old SAMP8 mouse com-
ared to 4-month-old SAMP8 mice brains (n
6 for each group)

dentified
rotein

Specific carbonyl levels
(% control�S.E.M.)

P-value

-Enolase 3920�1879 �0.07
DH-2 4224�1853 �0.005
K 322�72 
0.05
RP-2 443�130 �0.05
-Spectrin 2 195�34 �0.05
nd memory. m
Neurofilaments (NFs) are axonal proteins that give
xons their structure and define axonal diameter (Hoffman
t al., 1987; Brady, 1993). NFs are composed of light
NF-L), medium (NF-M) and heavy (NF-H) subunits and
ssemble to form long macromolecular filaments in a 6:2:1
atio. Since the nature of NFs is dynamic, the individual NF
roteins are turned over or exchanged within NFs in the
xon (Okabe et al., 1993; Takeda et al., 1994). Modifica-
ion of the NFs structure results in the destabilization of the
nteractions between the NF proteins. Such destabilization
s particularly damaging to motor neurons, which possess
longated axonal length and high axonal constitution,
ince motor neurons contain more NFs than other neurons
Crow et al., 1997). Transgenic mice expressing point
utation in NF-L and mice overexpressing either NF-L or
F-H display accumulations of disarrayed filaments in mo-

orneuronal perikarya and proximal axons, and such mice
eveloped motor neuron disease (Cote et al., 1993; Lee et
l., 1993). Oxidation and nitration of NF proteins will trans-
orm the �-helix to �-sheet and random coil conformations
Gelinas et al., 2000), and these oxidized proteins will then
e degraded by proteases (Grune et al., 1996; Davies,
001; Inai and Nishikimi, 2002; Grune et al., 2003). Con-
equently, oxidative modification could be responsible for
he NF abnormalities observed in several oxidative-stress-
elated neurodegenerative diseases notably AD, Parkin-
on’s disease, and amyotrophic lateral sclerosis (ALS;
oldman et al., 1983; Ulrich et al., 1987a,b; Manetto et al.,
988; Munoz et al., 1988; Toyoshima et al., 1989; Zhang et
l., 1989; Cammarata et al., 1990; Schmidt et al., 1991;
roost et al., 1992). The level of NF-L was also reported as
ecreased in AD, DS, ALS brains (Bergeron et al., 1994;
ajo et al., 2001). However, in the cerebrospinal fluid of AD
nd vascular dementia patients and aged human, the level
f NF-L is increased (Hu et al., 2002). This increase could
e caused by the discharge of abnormal NF-L, possibly by
xidative modifications, from the brain. It is known that
here is a decrement in the transcription rate and mRNA
evel of NF-L in aged male Fischer 344 rat brains (Krekoski
t al., 1996). Consistent with this result, the expression
F-L in SAMP8 brains is significantly decreased in aged
AMP8 brain, suggesting the decreased level of NF-L in
rain caused the increased axonal dystrophy in the gracile
ucleus observed in aged SAMP8 mice (Kawamata et al.,
998). Similarly, in the brain from gracile axonal dystrophy
ice, NF-L is oxidized (Castegna et al., 2004).

The spectrins are a family of widely distributed filamen-
ous proteins. �-Spectrin, a component of the membrane-
ssociated cytoskeleton, forms a supporting and orga-
ized scaffold for intracellular cohesion with the associa-
ion of actins (Leto et al., 1988). In rats, the mRNA level of
-spectrin increases gradually during the first postnatal
ays and reach a plateau between the second and third
eek of life. This is followed by a decline in levels through-
ut the brain (Gelot et al., 1994). This temporal expression
uggests that �-spectrin is important during CNS develop-
ent and normal function. The breakdown products of
-spectrin from calcium-activated proteolysis are com-

only used as markers of apoptosis (Vanderklish and
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ahr, 2000). A� can also induce these �-spectrin break-
own products in cultured rat cortical neurons by activating
aspases (Harada and Sugimoto, 1999). Similar increases
f �-spectrin breakdown products are observed in some
egions of the aged Balb/c mice brain (Bahr et al., 1991),
ndicating the level of �-spectrin may decreases as func-
ion of age (Bahr et al., 1994). Consistent with these stud-
es, our results here show a decreased level of �-spectrin
n aged SAMP8 mouse brain, as well as an increased
pecific carbonyl level, suggesting that the proteolytic
echanism in apoptosis involves oxidative modification
nd degradation of �-spectrin. This suggests that loss of
-spectrin by oxidation or degradation would disrupt the
ytoskeleton and the structure of cells in brain, thereby
ffecting intercellular and intracellular communications,
nd consequently causing the learning and memory defi-
its observed in SAMP8 mice. Moreover, degradation of
he intact cytoskeleton by Ca2�-sensitive proteinase may
e involved in memory recall (Lynch and Baudry, 1984).
herefore, the findings represented here are consistent
ith the hypothesis of decreased learning and memory in
ged SAMP8 mice.

DRP-2, � -spectrin, and NF-L are involved in signaling,
ntracellular trafficking and maintaining structure of den-
rites and axons in neurons. Increased oxidation or re-
uced expression of these proteins may account for the
euronal atrophy and loss in the posterior cholinergic col-
mn, reduction of dendritic spines in the hippocampal py-
amidal neurons, and increased axonal dystrophy in the
racile nucleus all observed in aged SAMP8 (Kawamata et
l., 1998). We hypothesize that these physiological alter-
tions may further disrupt the communication between
eurons, resulting in learning and memory impairments in
ged SAMP8 mice.

Heat shock proteins are a group of proteins whose
yntheses are induced when cells in culture are exposed to
eat and/or chemical stresses (Welch, 1992; Calabrese et
l., 2004; Poon et al., 2004). The most highly expressed
eat shock protein in unstressed cells is the 90 kDa heat
hock protein (hsp90) (Perdew et al., 1993). While most
tudies examine hsp90 as a single protein, there are two
eparate structural genes, hsp86 and hsp84 in the mouse
Moore et al., 1989, 1990), or hsp89� and hsp89� in the
uman (Rebbe et al., 1989). The sequences of hsp90-
elated proteins are highly conserved among vertebates
Perdew et al., 1993). Although hsp84 and hsp86 are
ighly conserved, examination of the level of expression of
sp86/hsp84 in murine tissues revealed that hsp86 is ex-
ressed in brain, testes, and placenta, whereas hsp84 is
ighly expressed in liver, thymus, kidney, and other tissues
Lee, 1990). It was shown that hsp90 has the ability to
ind to actin (Koyasu et al., 1989) in a Ca2�-calmodulin-
ependent manner (Koyasu et al., 1986, 1989) and inter-
ct with many receptors and kinases (Brugge, 1986; Ko-
asu et al., 1986; Ziemiecki et al., 1986; Perdew, 1988;
atts and Hurst, 1989; Rose et al., 1989; Pratt, 1990;
iyata and Yahara, 1992, 1995). These studies suggest

hat hsp90 plays a critical role in cell signaling for calcium

omeostasis, apoptosis, and cell cycle processes. Hsp90 A
s also involved in protecting protease activity from oxida-
ive modification (Conconi et al., 1996; Conconi and
riguet, 1997), indicating hsp90 possesses antioxidant ac-

ivity. Hsp90 (hsp84) level is also decreased in livers of
ged rats (Nardai et al., 2002). Consistent with this study,
e found here that levels of hsp86 are decreased in aged
AMP8 brains, suggesting that the weakened antioxidant
efense in aged SAMP8 may contribute to the increased
xidative modification of proteins (Butterfield et al., 1997;
arr et al., 2003). Moreover, decreased chaperone func-

ion might result, leading to increase damaged or aggre-
ated proteins that in turn could affect learning and mem-
ry. These conditions could contribute to the neurochem-

cal and behavioral changes observed in SAMP8 mice.
In our current study, we have identified the proteins

hat are oxidatively modified, and/or differently expressed,
n SAMP8 mouse brain as result of senescence. These
roteins are critical to energy utilization and metabolism,
tructure, interneuronal communications, and antioxidant
efense of the brain. The oxidative inactivation of LDH,
-enolase and TPI may be responsible for abnormal me-

abolism (Shimano, 1998) and neurochemical changes
Nardai et al., 2002) in SAMP8 mice brain. The abnormality
f DRP2, �-spectrin and NF-L may be responsible for the
xonal dystrophy (Kawamata et al., 1998) observed in
AMP8; and decreased hsp86 level may contribute to the

ncreased oxidative parameters in SAMP8 mice brains
Butterfield et al., 1997). Therefore it is possible that the
oss of the activities of these proteins by oxidative modifi-
ation, or by decreased expression, may contribute to the
bnormal metabolism (Shimano, 1998) and neurochemical
hanges (Nardai et al., 2002) seen in SAMP8 mice and
ight ultimately contribute to their deficits in learning and
emory. Therefore, assay of these proteins will be needed

o investigate their putative inactivation by oxidative mod-
fication. How our findings in aged SAMP8 mice related to
ormal aging remains to be elucidated. Conceivably, the
hange of protein specific carbonyl and expression levels
eported in our study may be found in normal aging as well.
roteomics comparison between young and normal aging
ice is in progress. Nevertheless, our current study forms
framework for subsequent experiments and provides

vidence that oxidative stress affects specific proteins in
ays that could result in deficits in learning and memory.
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