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Abstract

Amyloid h-peptide (Ah) is known to induce free radical-mediated oxidative stress in the brain. Free radical-mediated damage to the

neuronal membrane components has been implicated in the etiology of Alzheimer’s disease (AD). Ah is produced by proteolytic processing

of the amyloid precursor protein (APP). The senescence accelerated mouse prone 8 (SAMP8) strain was developed by phenotypic selection

from a common genetic pool. The SAMP8 strain exhibits age-related deterioration in memory and learning as well as Ah accumulation, and

it is considered an effective model for studying brain aging in accelerated senescence. Previous research has shown that a phosphorothiolated

antisense oligonucleotide directed against the Ah region of APP decreases the expression of APP and reverses deficits in learning and

memory in aged SAMP8 mice. Consistent with other reports, our previous study showed that 12-month-old SAMP8 mice have increased

levels of oxidative stress markers in the brain compared with that in brains from 4-month-old SAMP8 mice. In the current study, 12-month-

old SAMP8 mice were treated with antisense oligonucleotide directed against the Ah region of APP, and the oxidative markers in brain were

decreased significantly. Therefore, we conclude that Ah may contribute to the oxidative stress found in aged SAMP8 mice that have learning

and memory impairments. These results are discussed in reference to AD.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Amyloid h-peptide (Ah) is the major constituent of

senile plaques, a pathological hallmark of Alzheimer’s

disease (AD). It is generally accepted that Ah(1–42) plays
a central role in the pathophysiology of AD [95]. Our

laboratory, along with others, suggested that Ah neurotox-

icity is mediated through its ability to produce free radical

oxidative stress, including protein oxidation and lipid per-

oxidation [18,19,22,26,28,105]. The methionine residue at
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position 35 (Met-35) is important in this process

[12,16,18,25,68,69,106,111]. Also, Ah-induced damage

can be modulated by the enzyme superoxide dismutase

(SOD), suggesting O2
S � is involved in Ah toxicity [102].

Ah induces O2
S� production by stimulating NADPH oxidase

[67]. Ah is reported to produce H2O2 through copper or iron

reduction. Ah can also increase NO production in macro-

phages which are present in a microglial cell line [83]. Free

radicals further oxidatively modify protein, lipid and DNA

in cells resulting in cytotoxicity [19]. Other mechanisms by

which Ah can induce neurotoxicity include binding to the

nicotinic acetylcholine receptor [107], forming calcium and

potassium channels in cell membranes [8,44,45], decreasing

glucose transport across brain endothelial cells [14], and
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actuating the release of chemokines [48] and cytokines[2].

Ah causes oxidative modification of glutamate synthetase

[3] and the glutamate transporter [73], both of which are

decreased in activity in AD brain [19]. This suggests that

Ah-mediated excitotoxic mechanisms could be important in

AD [20 ]. Loss of enzymatic activity of glutamine synthe-

tase results when the protein is oxidized [3], a modification

that changes the conformation of this enzyme [23].

When Ah is given exogenously, it causes deficits in

learning and memory in animals [34,35,52,54,97,101,108].

Such learning and memory impairments are also present

when Ah is overly expressed in transgenic models [64] and

the senescence accelerated prone (SAMP8) mouse [47,49–

51,53,55,87].

It has, therefore, been proposed that reducing the levels

of Ah could slow or even prevent cognitive impairment

observed in AD or age-related dementia [82]. Such reduc-

tions can be achieved by site-directed antisense oligonucle-

otide therapy. This type of oligonucleotide is designed to

bind to a complementary sequence (referred to as the ‘‘target

sequence’’) in a selected mRNA, inhibiting gene expression

at the translational level. As a consequence, the protein

product coded by that particular mRNA is not produced

[58]. Since antisense oligonucleotides are intended to inac-

tivate specific RNA nucleotide sequences rather than three-

dimensional protein structures as antibodies do, they offer

the advantage of discriminating among closely related gene

products [94]. Therefore, site-directed antisense oligonucle-

otide therapy offers significant advantages for the specific

reduction of Ah production.

The SAMP8 mouse strain has undergone a natural muta-

tion which has resulted in age-dependent defects of learning

and memory beginning at about 8 months of age [50]. At the

same time, SAMP8 mice produce increased amounts of

amyloid precursor protein (APP) and Ah in brain similar to

those moieties observed in AD [86]. The nucleotide sequence

of APP in SAMP8mice is 89.2% homologous with that in the

human. Unlike transgenic mice that have 5–14 times the

normal amount of Ah increased in their brains as function of

age, theAh level of SAMP8mice increases only 100% from 4

to 12 months [71]. Such an increase is much closer to the

estimated50% increase inAh seen inAD[91] than is observed

in transgenic mouse models. The APP and APP mRNA of

SAMP8micealso increase significantly as themice age from4

to 12 months [71,86]. Hence, SAMP8 mice serve as a useful

model in the study of age-related cognitive impairment.

It is possible to decrease the APP production in the brain

by giving an intracerebroventricular injection of a 42-mer

phosphorothiolated antisense oligonucleotide (AO) directed

at the Ah region of the APP gene. Injection of AO twice or

more has been shown to improve acquisition and retention in

a footshock avoidance paradigm [70]. Although many in

vitro studies show the benefits of reducing APP level by

antisense RNA [74], antisense ribozoymes [40–42], or AOs

[7,37,77], little is known about the relation between the

reduced Ah level by AO and oxidative stress. Therefore, in
this current study, we hypothesized that the cognitive im-

provement resulting from AO treatment of SAMP8 mice is

caused by a decrease in Ah-induced free radical insults. To

test this hypothesis, we compared the protein oxidation and

lipid peroxidation markers in brain from 4-month-old

SAMP8mice treated with saline (4m), 12-month-old SAMP8

mice treated with random AO (12mR), and 12-month-old

SAMP8 mice treated with the 42-mer AO directed at the Ah
region of the APP gene (12mA).
2. Materials and methods

All chemicals are purchased from Sigma Aldrich unless

specified.

2.1. Subjects

The SAMP8 mice were from an in-house colony, inbred

for 10 years from stock obtained from Dr. Takeda of Kyoto

University, Japan. Mice were on a 12:12-h light/dark cycle

with lights on at 0600 h. Food and water was available ad

libitum. Sentinels from the colony have remained free of

pathogens including mycoplasma, salmonella/shigella, ecto-

parasites, pneumonia virus, Sendai virus, mouse hepatitis,

Reo 3, ectromelia, GBVII, and lymphcytic choriomeningitis.

2.2. Antisense oligonucleotides (AO) and its permeability to

cell membrane

We designed phosphorothiolated antisense oligonucleo-

tides (AO) directed at positions 17–30 of the Ah region of

the APP gene (Midland Certified Reagent, Midland, TX).

The sequences of the designated AO and of a random AO

used as a control are given in Table 1. These AOs were

previously used to reverse the learning and memory deficit

observed in aged SAMP8 mouse [70].

Hippocampal neuronal cultures were prepared from 18-

day-old Sprague–Dawley rat fetuses as described previous-

ly [43]. Incorporation of AO into neurons was observed

using fluorescein-conjugated AO. Briefly, neuronal cells

were incubated with 10 ng of 5V-FITC-AO for 2 h at 37

jC followed by washing with PBS (three times) to remove

the excess of 5V-FITC-AO and the cells were examined

under a fluorescence microscope equipped with an argon

laser (kex 485 nm, kem 530 nm).

2.3. Antisense administration

Administration of AO was performed according to

Kumar et al. [70]. Mice were anesthetized in a stereotactic

instrument with methoxyflurane. Three injections of vehicle

or AO were given to the mice by intracerebroventricular

(ICV) injection on 2 weeks intervals (from 11 to 12

months). All substances (65 ng) were injected in a 2

Al volume by drilling a hole through the skull over the third



Table 1

The antisense and control random phosphorothiolated oligonucleotides used for inhibition of APP translation

AO Sequence

AO inhibiting APP translation GGCGCCTTTGTTCGAACCCACATCTTCAAAAGAACACCAG

Random AO GATCACGTACACATCGACACCAGTCGCCATGACTGAGCTT
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ventricle (� 0.5 relative to Bregma; 0.5 mm right of central

suture). The scalp wound was closed and the mice were

returned to their cages.

2.4. Sample preparation and methods employed

Mice were sacrificed 2 weeks after the last injection.

SAMP8 mouse whole brains were flash frozen in liquid

nitrogen. The samples were homogenized in PBS with

protease inhibitors (2 mM EDTA, 2 mM EGTA, 20 mM

HEPES, 20 Ag/ml trypsin inhibitor, 4 Ag/ml leupeptin (ICN

Biomedicals, Ohio), 4 Ag/ml pepstatin (ICN Biomedicals), 5

Ag/ml aprotinin (ICN Biomedicals)) by sonication. Protein

concentration was determined by the bicinchoninic acid

(BCA) assay method (Pierce, Rockford, IL).

2.5. Immunochemistry

2.5.1. Slot blot and Western blot of Ab levels

About 12.5 Al of the samples was treated with an equal

volume Laemmli buffer (0.125 M Trizma base, 4% SDS,

20% glycerol) for 20 min. Levels of Ah were measured by

slot blot with 1 Ag per slot. For Western blot, 12.5% linear

Gradient Precast criterion Tris–HCl gels (Bio-Rad, Califor-

nia) were used to perform the separation of the proteins.

Precision Proteink Standards (Bio-Rad) were run along

with the sample at 200 V for 45 min. The proteins from gels

were transferred to a nitrocellulose paper (Bio-Rad) using

the Transblot-BlotR SD Semi-Dry Transfer Cell (Bio-Rad)

at 8 V for 45 min. Ah levels from both Western blot and slot

blot were detected on the nitrocellulose paper using a

primary mouse antibody (a generous gift from Dr. Ralph

N. Martins) specific for Ah (1:50) and then a secondary

anti-mouse IgG (AnaSpec, California) antibody. The resul-

tant stain was developed by application of Sigma-Fast 5-

bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium

(BCIP/NBT) tablets followed by density measurement by

Scion-Image software package (Scion, Maryland).

2.5.2. Protein carbonyl, 3-nitrotyrosine (3-NT) and 4-

hydroxynonenal (HNE) detection

Detection of protein carbonyl, 3-NT and HNE level by

slot blots were performed as described previously [47].

Levels of 3-nitrotyrosine (3-NT), 4-hydroxynonenal

(HNE) and protein carbonyls were determined immuno-

chemically. Protein carbonyl levels were determined as

adducts of 2,4-dinitrophenylhydrazine (DNPH) [21,98].

Five microliters of the samples was treated with an equal

volume of 12% SDS. Samples were then derivatized with 10
Al of 20 mM 2,4-DNPH (Chemicon, California) for 20 min.

The reaction was stopped by addition of neutralizing reagent

(7.5 Al of 2 M Tris/30% glycerol buffer, pH = 8.0). Levels of

protein carbonyls were measured by using the slot blot

technique with 250 ng of protein loaded per slot. The 2,4-

dinitrophenyl hydrazone (DNP) adduct of the carbonyls is

detected on nitrocellulose paper using a primary rabbit

antibody (Chemicon) specific for DNP-protein adducts

(1:100) followed by a secondary goat anti-rabbit IgG (Sigma)

antibody. The resultant stain was developed by application of

Sigma-Fast (BCIP/NBT) tablets; the line densities were

quantified by Scion-Image software package. HNE and 3-

NT levels were determined in the same manner. Five micro-

liters of the samples was treated with an equal volume of 12%

SDS. Samples were then further denatured with 10 Al of
Laemmli buffer (0.125 M Trizma base, 4% SDS, 20%

glycerol) for 20min. Levels of 3-NTandHNEweremeasured

by using the slot blot technique: 500 ng of protein per slot for

protein 3-NT levels and 250 ng of protein per slot for HNE

levels. The HNE levels were detected on the nitrocellulose

paper using a primary rabbit antibody (Alpha Diagnostics,

Texas) specific for HNE-modified protein (1:8000). The 3-

NT levels were detected by primary rabbit antibody (Chem-

icon) specific for 3-NT (1:100). The same secondary goat

anti-rabbit IgG (Sigma) antibody was then used. The resultant

stain was developed by application of Sigma-Fast (BCIP/

NBT) tablets; the line densities were also quantified by Scion-

Image software package.

2.5.3. Thiobarbituric acid reactive substances (TBARS)

The concentration of TBARS in brain tissue was deter-

mined according the method of Ohkawa et al. [88]. Four

hundred microliters of 10% w/v of ice cold TCAwas added

into 0.25 ml of 4 mg/ml tissue homogenate. The samples

were spun in an Eppendorf centrifuge tube for 5 min at

3000� g. The supernatant was collected (0.5 ml) and

treated with TBA reagent (20 mM TBA in 50% v/v glacial

acetic acid). The samples were then heated at 100 jC for 1

h. After the cooling period, 500 Al of water-saturated

butanol was added, and the organic layer was removed

and redistributed to a black microtiter plate (Corning). End

point fluorescence was measured at kex = 515 nm and

kem = 585 nm by SpectMX UltraXSR (Molecular Devices).

2.5.4. Glutamine synthetase (GS) assay

Fresh, non-frozen brains, shipped on ice overnight from

St. Louis to Lexington, were homogenized in a 0.32 M

sucrose isolation buffer (2 mM EDTA, 2 mM EGTA, 20

mM HEPES, 20 Ag/ml trypsin inhibitor, 4 Ag/ml leupeptin,



Fig. 1. (A) Bright filed micrograph showing live neurons (arrowed). (B) Fluorescence micrograph showing dark spots which represent the fluorescence from

the 5V-FITC-AO remaining in the cells after washes.
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4 Ag/ml pepstatin, 5 Ag/ml aprotinin). The samples were then

centrifuged at 20,000� g at 4 jC for 10 min. Supernatants

that contain GS and other cytosolic proteins were extracted.
Fig. 2. (A) Western blot of Ah levels in brains of 12mR and 12mA mice. Data rep

with random AO (12mR) and 12-month-old SAMP8 mice treated with AO directe

in each group. Measured values are normalized to the 12mR values. *p< 0.05. (B)

average of the level of Ah of 4-month-old SAMP8 mice treated with vehicle (4m),

old SAMP8 mice treated with AO directed to the Ah region of APP (12mA). Err

normalized to the 4m values. *p< 0.05; **p< 0.05; #p>0.2.
The protein concentration was determined by the BCA

method and normalized to 0.4 mg/ml by addition of the

0.32 M sucrose solution. GS activity was determined by the
resents the average of the level of Ah of 12-month-old SAMP8 mice treated

d to the Ah region of APP (12mA). Error bars indicate SEM for six animals

Slot blot of Ah levels in brains of 4m, 12mA and 12mA. Data represents the

12-month-old SAMP8 mice treated with random AO (12mR) and 12-month-

or bars indicate SEM for eight animals in each group. Measured values are
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method of Meister [84,92] as modified by Miller et al. [85].

The absorbance was recorded at 505 nm in a microtiter plate

reader (PowerWaveXR, Bio-Tek Instruments).

2.5.5. Statistics

The data were analyzed by Student’s t-tests. A value of

p < 0.05 was considered statistically significant.
Fig. 4. Protein carbonyl level. Results show the average protein carbonyl

level of 4-month-old SAMP8 mice treated with vehicle (4m), 12-month-old

SAMP8 mice treated with random AO (12mR), and 12-month-old SAMP8

mice treated with AO directed to the Ah region of APP (12mA). Error bars

indicate the SEM for six animals in each group. Measured values are
#

3. Results

3.1. Accessibility to cells and effects on Ab levels of AO

3.1.1. Accessibility of AO in cell cultures

The AO approach previously was used to reverse the

learning and memory deficits of aged SAMP8 mice [70],

consistent with the notion that the AO penetrated nucleuses

in vivo. To model this result, we used neuronal cultures.

Fig. 1A shows bright-field microscopy of living neurons

(arrows) and Fig. 1B shows the fluorescence intensity of

AO inside the neurons, indicating that the AOs successfully

cross the cell membrane and remain in the neurons after

washes. Approximately 8% of the neurons successfully took

up the AO.

3.1.2. Effect of AO on Ab levels in SAMP8 mice brain

Fig. 2A shows the Western blot of Ah levels in 12mR

and 12mA brain homogenate. The Ah level in the 12mA

SAMP8 mice brain is decreased by 40% due to the effect

of AO ( p < 0.05), while the Ah level in brain from

SAMP8 mice treated with 12mR was equal to that of

untreated 12-month-old SAMP8 mice. Slot blot analysis of

levels of Ah in brains of 4-month-old SAMP8 mice

reveals that Ah levels are equivalent to those of 12-

month-old treated with AO, i.e., AO treatment of aged

SAMP8 mice lower Ah levels in brain to those of young

mice (Fig. 2B).
Fig. 3. Glutamine synthase activity. Data represents the average GS activity

of 4-month-old SAMP8 mice treated with vehicle (4m), 12-month-old

SAMP8 mice treated with random AO (12mR) and 12-month-old SAMP8

mice treated with AO directed to the Ah region of APP (12mA). Error bars

indicate SEM for six animals in each group. Measured values are

normalized to the 4m values. *p< 0.01; **p< 0.05; #p>0.2.
3.2. Protein oxidation

3.2.1. Glutamine synthetase (GS) assay

GS is an oxidatively sensitive enzyme [24], whose

activity is decreased in AD brain [61], probably a result

of specific oxidation [20,31]. Also, it was shown that

Ah(1–40) and Ah(25–35) can inactivate GS in cell-free

incubates as well as in cell culture, indicating that Ah-
mediated oxidative stress maybe responsible for inactiva-

tion of GS [5].

Fig. 3 shows that the activity of GS in 12mR mice brains

was decreased to 85.7F 3.1% compared to the 4m mice

brains ( p < 0.01). Antisense directed against the Ah region

of APP partially reversed this decrease ( p < 0.05), with the

activity of GS restored to 94.3F 1.9% of the mean GS

activity from 4m brains. This value was statistically identi-

cal to that between the 4-month-old brain ( p>0.2).

3.2.2. Protein carbonyl level

Protein carbonyls are an index of protein oxidation [21]

and are increased in AD brain [19,26,31,32,61]. Consistent

with the GS assay results, Fig. 4 shows that the brain

protein carbonyl levels were increased in 12mR mouse

brains compared to those in brains from 4m mice

( p < 0.05). However, by decreasing the production of Ah
by antisense against APP, the brain protein carbonyl levels

of 12-month-old SAMP8 mice were significantly de-

creased to 89.6F 4.5% ( p < 0.01), and found to be insig-

nificantly different to those in brain from 4-month-old

mice ( p>0.05).

3.2.3. 3-Nitrotyrosine (3-NT)

Fig. 5 shows that the 3-NT levels of 12mR SAMP8 brain

protein were significantly increased compared to those in

brain from 4-month-old mice (118F 3.4%, p < 0.001).

However, after injection of the antisense against APP, the

3-NT levels were significantly decreased to 99.6F 2.7%

normalized to the 4m values. *p< 0.05; **p< 0.01; p>0.05.



Fig. 5. 3-Nitrotyrosine level. Results represent the average protein 3-NT

level of 4-month-old SAMP8 mice treated with vehicle (4m), 12-month-old

SAMP8 mice treated with random AO (12mR), and 12-month-old SAMP8

mice treated with AO directed to the Ah region of APP (12mA). Error bars

indicate the SEM for six animals in each group. Measured values are

normalized to the 4m values. *p< 0.001; **p< 0.005; #p>0.8.

Fig. 7. TBARS level. Results represent the average TBARS level of 4-

month-old SAMP8 mice treated with vehicle (4m), 12-month-old SAMP8

mice treated with random AO (12mR), and 12-month-old SAMP8 mice

treated with AO directed to the Ah region of APP (12mA). Error bars

indicate the SEM for six animals in each group. Measured values are

normalized to the 4m values. *p< 0.05; **p< 0.05; #p>0.4.
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( p < 0.005), a level similar to that of brain from 4m mice

( p>0.8).

3.3. Lipid peroxidation

3.3.1. HNE

HNE is a reactive product of lipid peroxidation [21] that

is elevated in AD brain [28,73,81]. Fig. 6 shows that in the

12mR SAMP8 mice brain, the protein-bound HNE levels

were 114F 0.8% of the level found in 4-month-old mice, a

statistically significant increase ( p < 0.00005). However, the

HNE levels for brain protein from 12-month-old mice was

decreased significantly to 106F 1.9% by the AO injection

( p < 0.005), a value only slightly elevated from that in 4m

mice brain ( p = 0.04).

3.3.2. TBARS

Consistent with the increase in HNE levels, Fig. 7

shows that TBARS levels in 12mR were increased to
Fig. 6. HNE level. Results represent the average HNE level of 4-month-old

SAMP8 mice treated with vehicle (4m), 12-month-old SAMP8 mice treated

with random AO (12mR), and 12-month-old SAMP8 mice treated with AO

directed to the Ah region of APP(12mA). Error bars indicate the SEM for

six animals in each group. Measured values are normalized to the 4m

values. *p< 0.00005; **p< 0.005; #p= 0.04.
108.6F 3.0% of that found in 4-month-old mice, a statis-

tically significant increase ( p< 0.05). However, with the

injection of AO, the TBARS levels were significantly

decreased to 96.7F 3.5% ( p < 0.05), a level that was not

significantly different from that in 4m mice brain ( p>0.4).
4. Discussion

We previously showed that AO is able to cross blood–

brain barrier (BBB) and reduce APP protein levels in aged

SAMP8 mice brains [11,70]. We report here that AOs

successfully cross cell membranes and enter neurons (Fig.

1). Others reported that cells in culture can take up antisense

oligonucleotides against APP [1], and neuronal cells in

culture appear to internalize AOs relatively efficiently

[72]. Consistent with these other studies, we show here that

small amount of neurons are able to internalize AOs. The

low amount of neuronal uptakes of AOs was possibly due to

the short incubation time (2 h). Nonetheless, AOs were

shown to enter the cells. Although no direct evidence here

shows that AO binds to APP mRNA, APP level reduction

was previously reported [70], which in turn reduced Ah
production. Others reported that AO against APP can reduce

Ah production in rats to approximately 37% [82]. Consis-

tent with this result, we find that AOs reduced Ah level by

approximately 40% in SAMP8 mice brains. This indicates

that the AO is able to cross the BBB [11] and enter neurons,

then reduce the protein levels of APP [70], consequently

reducing the level of Ah (Fig. 2).

Consistent with previous findings [27,47], our current

results show that the 12mR SAMP8 mice have increased

brain lipid peroxidation and protein oxidation compared to

those in brain from 4m SAMP8 mice. Therefore, the random

AO treatments had no effect on lipid peroxidation or protein

oxidation observed in aged SAMP8 mice brain. Our find-

ings also show that brain lipid peroxidation, protein oxida-
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tion, and Ah levels of 12-month-old SAMP8 mice are

reduced by injection of AO.

Lipid peroxidation is an important mechanism of neuro-

degeneration in AD brains. TBARS and protein-bound HNE

levels, commonly used as lipid peroxidation markers [21],

are significantly elevated in AD brains [10,19,26,75,

78,81,90,93,99]. HNE is able to diffuse to sites distant from

that of its formation because of its comparatively long half-

life [21]. HNE elevation has been described in multiple

brain regions and in ventricular cerebrospinal fluid (CSF) in

AD [81]. Ah leads to HNE formation [73,79]; this alkenal

can alter the conformation of membrane proteins [100]. It is,

therefore, a reasonable hypothesis that reducing the produc-

tion of Ah should decrease lipid peroxidation. Unlike other

antioxidant studies which decrease lipid peroxidation by

blocking the Ah-associated radical insult [9,15,22,29,

39,59,79,80,113], our current study shows that Ah-mediated

lipid peroxidation can be reduced by decreasing the pro-

duction of Ah through AO injection into brain.

Protein oxidation is another important factor in aging and

age-related neurodegenerative disorders [19,21,24,30,

47,61,98]. Protein carbonyls, 3-NT levels, and GS assay

are commonly used as markers of brain protein oxida-

tion[21]. A significant increase in protein carbonyls was

reported in AD brains [6,20,31,32,61,76]. 3-NT is formed

by oxidation of tyrosine by peroxynitrite. 3-NT levels were

significantly increased in the hippocampus and cortical

regions of AD as well as CSF [33,62,103]. Other studies

have demonstrated that oxidative processes often result in

decreased activity of key enzymes [5,57,61,63]. AD is

characterized by the loss of GS activity [61], which can

also be caused by Ah [3,4,23]. Antioxidants can inhibit

brain protein oxidation induced by Ah [17,25,26,60,

104,105,110,112,113,114], and here we show that antisense

directed against APP reduce levels of Ah and of brain-

resident oxidative stress.

Our laboratory has proposed a model for neurodegenera-

tion in AD brains based on free radical oxidative stress

associated with Ah(1–42) [19,28,105]. This model predicts

that chemistry associated with the single methionine residue

of Ah(1–42) [Met-35] would induce lipid peroxidation and

protein oxidation in neuronal membranes. The role of Met-

35 as a mediator of the toxicity of Ah is most likely to

involve an oxidative event at the sulfur atom [68,69,111].

However, the event that initiates the oxidation of Met-35 is

not yet clear. It could involve one or more of the several

reactive oxygen species present in biological systems [106]

or redox metal ions [12,38]. Since the structure of Ah from

position 28 to position 42 is helical [36,96], the backbone

oxygen atom of Ile-31 is within a van der Waals distance of

the sulfur atom of Met-35. Such an interaction could

increase the susceptibility for oxidation of the sulfur atoms

of Met-35 in Ah, leading to sulfuramyl free radicals

[68,106]. APP in SAMP8 mice has 89.2% homology to

the human protein. The amino sequence of Ah in SAMP8

mice is highly similar to that of humans with the exception
of glycine replacing arginine at position 5, phenylalanine

instead of tyrosine at position 10, and arginine instead of

histidine at position 13 [71]. The critical Met-35 and Ile-31

remain present in Ah of SAMP8 mice. Moreover, Ah can

increase O2
S� and NO production by stimulating NADPH

oxidase and macrophages, respectively [67,83]. Ahwas also

shown to mediate H2O2 production in cell culture [13],

possibly through reduction of copper and iron [65,66].

Another Ah-mediated reactive oxygen species (ROS) pro-

duction is through its binding to the receptor of advance

glycated end-products (RAGE) [109]. Therefore, it is rea-

sonable that the 12mR mouse brains suffer higher Ah-
mediated oxidative stress than the 4m mouse brains, since

the Ah level was significantly higher in the brains from

12mR compared to that in 4m. Since APP expression was

reduced by AO treatments in 12mA SAMP8 mice brain

[70], there is less Ah present in brain to induce direct and

indirect oxidative insults. The current study suggests that

decreased Ah production contributed to the decreased

protein oxidation and lipid peroxidation in 12-month-old

AO SAMP8 mouse brains. Reduction of protein oxidation

and lipid peroxidation conceivably could alleviate the mi-

tochondrial dysfunction, redox metal imbalance, advanced

glycation end-products, and excitotoxicity that interact with,

and are exacerbated by Ah [26]. Thus, this AO approach,

which improves the learning and memory impairment

observed in 12-month-old SAMP8 mice [70], points to the

importance of Ah in oxidative stress in this mouse strain,

and presumably in AD patients as well.

Previously, we have shown that oxidative stress is closely

related to lessening of learning ability and memory retention

in SAMP8 mice [47]. It was also demonstrated that using

AO against the Ah region of APP to lower Ah production

could improve learning and memory in SAMP8 mice [70].

In the current study, we extended the previous research and

investigated the role of Ah in oxidative stress associated

with learning and memory impairment. Lesion studies in

other animals have shown that spatial learning is dependent

on the integrity of the septohippocampal pathway [46,89].

Although Ah may not directly inhibit cellular function, Ah-
mediated oxidative stress in the form of lipid peroxidation

may do so [26,28]. It is possible that Ah-mediated free

radicals, possibly through the effects of the lipid peroxida-

tion product HNE and acrolein, react with enzymes, recep-

tors, and neurotransmitters (such as norepinephrine or

dopamine), thereby disrupting the function of the septohip-

pocampal pathway. As a result, the functioning of the whole

septohippocampal pathway would be decreased. Pharmaco-

logical studies have shown that the memory defects in

SAMP8 mice are dependent on the septohippocampal

pathway [56].

Therefore, injecting AO directed to the Ah region of APP

in 12-month-old SAMP8 mice can alleviate the Ah-mediated

oxidative stress, likely contributing to the improved the

learning ability and memory retention as reported [11,70].

Further studies on the effect of Ah and protection by AO on
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the septohippocampal pathway are in progress. These studies

should provide a better understanding of the role in Ah in

learning and memory impairment with aging and in AD.
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